• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • RCR Wireless News
  • Enterprise IoT
  • Editorial Calendar
  • Advertise
  • Webinars
  • Reports
  • White Papers
  • Subscribe

In-Building Tech

Connecting CRE building technology buyers with CRE tech sellers

720×90

  • Industry
    • Office & Commercial
    • Data Center, Network Hotels
    • Government
    • Healthcare
    • Higher Ed
    • Hospitality
    • K-12
    • Laboratory & Scientific
    • Manufacturing
    • Multi-Family
    • Transportation: Airports, Rail, Ports
    • Smart City
    • Stadiums, Arenas, Venues
  • Tech
    • Drones
    • AI-Machine-Learning
    • Wi-Fi
    • Augmented Reality
    • IoT (platform, gateway)
    • Networks
    • 5G Resources
    • Microcontrollers
    • Microprocessors
    • Data Analytics
    • Wired Networks, Fiber
    • Wireless (Cell, DAS, BDA, Repeaters, Boosters)
    • Positioning, GPS, Navigation
    • Security
    • Sensors
  • Systems
    • Energy
    • Lighting
    • HVAC
    • Security
  • Functions
    • Automation
    • Building Management
    • Construction
    • Asset Management (EAM)
    • Materials
    • Maintenace (MRO)
  • Smart Buildings
  • News & Event Coverage
  • In-Building Wireless
  • About In-Building Tech
  • Qualcomm 5G Insights
You are here: Home / 5G / NEC develops millimeter wave distributed antenna radio unit for indoor 5G apps

NEC develops millimeter wave distributed antenna radio unit for indoor 5G apps

January 27, 2020 by Juan Pedro Tomás

  •  
  •  
  •  
  •  
  •  
5G

Japanese company NEC Corporation announced the development of millimeter-wave distributed antennas for the efficient use of 5G millimeter-wave spectrum (28GHz band), the company said in a release.

Demonstration experiments were conducted with this technology at the NEC Tamagawa Plant in 2019, where the capability of high-speed, large-capacity communications with stable propagation channel quality were confirmed.

The Japanese firm highlighted that 5G technology uses millimeter waves, which have frequency bands more than 10 times higher than 4G, and are expected to contribute to a wide range of services that provide high-speed, large-capacity, low-latency, and multiple connections. Due to the nature of millimeter waves, however, communication quality is susceptible to deterioration due to shielding and interference caused by obstacles and installations. As a result, it is necessary to establish a large number of base stations to ensure communication quality, NEC said. However, in places with limited space, such as homes and workplaces, there is also a need to downsize base stations.

To resolve these challenges, NEC developed digital coordination technologies to connect distributed antenna elements for wireless satellite stations of 5G millimeter-wave (28GHz-band) base stations. Moreover, NEC resolved the issues of shielding and diffraction of propagation paths for interior mobile communications using millimeter-wave communication. This technology applies NEC’s proprietary massive MIMO, which combines a large number of independent antennas, in order to deliver millimeter-wave high-speed, high-capacity communications with stable communication quality.

In addition, by connecting distributed antennas to control units using a frequency multiplexer that consolidates multiple signals, NEC resolved issues related to attenuation, synchronization and power supply that might arise when connecting antennas and control units with high-frequency cable or optical cable, thereby helping to facilitate the installation of antennas. Furthermore, NEC has produced smaller antennas (approximately 5cm×2cm with 8 components) by designing and implementing circuits cultivated through NEC’s iPASOLINK microwave communication system.

NEC’s demonstration experiment consisted of a system with eight antennas, a control unit for controlling antennas, and a baseband processing unit that controls antennas.

In the experiment, NEC applied digital beamforming, which had been developed in the sub-6GHz and millimeter bands, to 28GHz band antennas. By combining and multiplying the space of radio waves, NEC achieved not only high-speed, high-capacity communication, but also stabilized the propagation path. NEC also said it achieved stable communications in difficult propagation environments, such as shadowing by walls, interference from reflective waves, and environments where multiple terminals are closely linked.

Going forward, NEC will continue to conduct demonstration tests in various environments, such as office buildings, commercial facilities, and factories, with the aim of commercializing this technology by the end of 2020.

Related

Filed Under: 5G

About Juan Pedro Tomás

Juan Pedro covers Global Carriers and Global Enterprise IoT. Prior to Arden Media Company, Juan Pedro worked for Business News Americas, covering telecoms and IT news in the Latin American markets. He also worked for Telecompaper as their Regional Editor for Latin America and Asia/Pacific. Juan Pedro has also contributed to Latin Trade magazine as the publication's correspondent in Argentina and with political risk consultancy firm Exclusive Analysis, writing reports and providing political and economic information from certain Latin American markets. He has a degree in International Relations and a master in Journalism and is married with two kids.

Contact Juan Pedro at [email protected]

Primary Sidebar

Sponsors

Search

300×350

300×100

CommScope forsees CBRS taking shape

Categories

Top Posts & Pages

  • Zome Energy Networks targets the Austin energy market with new projects
    Zome Energy Networks targets the Austin energy market with new projects
  • ExteNet Systems focus on "Fiber-First"to boost network-as-a-service offerings
    ExteNet Systems focus on "Fiber-First"to boost network-as-a-service offerings
  • In-Building Tech: Technology Insights for Commercial Real Estate Professionals
    In-Building Tech: Technology Insights for Commercial Real Estate Professionals

RSS Enterprise IoT Insights

  • Seeq teams up on industrial IoT for utilities, oil and gas, manufacturing in Asia Pacific
  • Sony Semiconductor intros NB2 IoT chipset with 2G fallback for tracking, monitoring
  • Private 5G for industrial IoT in smart ports – payback in two years, says Ericsson

Recent Posts

  • Zome Energy Networks targets the Austin energy market with new projects
  • ExteNet Systems focus on “Fiber-First”to boost network-as-a-service offerings
  • Ericsson explains how 5G will transform event experiences

Archives

Tweets by InBuildingTech
  • RCR Wireless News
  • Enterprise IoT
  • Editorial Calendar
  • Advertise
  • Webinars
  • Reports
  • White Papers
  • Subscribe

Copyright © 2021 • Arden Media Company, LLC

This site uses cookies to improve and personalize your experience and to display advertisements. This site may also include cookies from third parties. By using this site you consent to the use of cookies.AcceptPrivacy Policy